
VulDigger: A Just-in-Time and Cost-Aware Tool for
Digging Vulnerability-Contributing Changes

Limin Yang∗, Xiangxue Li∗† and Yu Yu‡
∗Department of Computer Science and Technology, East China Normal University, Shanghai, China

†Westone Cryptologic Research Center, Beijing, China; National Engineering Laboratory for Wireless Security, XUPT
‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: lmyang@stu.ecnu.edu.cn, xxli@cs.ecnu.edu.cn, yuyu@yuyu.hk

Abstract—It has been widely adopted to minimize the mainte-
nance cost by predicting potential vulnerabilities before code au-
dits in academia and industry. Most previous research dedicated
to file/component-level vulnerability prediction models is coarse-
grained and may suffer from cost-prohibitive and impractical
security testing activities. In this paper, we focus on a cost-
aware vulnerability prediction model and present a just-in-time
change-level code review tool called VulDigger to dig suspicious
ones from a sea of code changes. Our contributions benefit from
the case study of Mozilla Firefox by constructing a large-scale
vulnerability-contributing changes (VCCs) dataset in a semi-
automatic fashion. We then further manifest a classification tool
with a mixture of established and new metrics derived from
both software defect prediction and vulnerability prediction.
Consequently, the precision of such tool is extremely promising
(i.e., 92%) for an effort-aware software team. We also examine
the return on investment by training a regression model to locate
most skeptical changes with fewer lines to inspect. Our findings
suggest that such model is capable of pinpointing 31% of all
VCCs with only 20% of the effort it would take to audit all
changes (i.e., 55% better than random predictor). Our outputs
can assist as an early step of continuous security inspections as
it provides immediate feedback once developers submit changes
to their code base.

I. INTRODUCTION

Code audits and security testing have been cost-prohibitive
processes since most people today don’t test software until
it gets into the deployment phase of its life cycle and such
practice has been proved ineffective to locate vulnerabilities
or security bugs. Considering the disastrous consequence an
exploited vulnerability could cause, e.g., Heartbleed [1], and
to reduce the inspection effort, researchers have proposed a
multitude of vulnerability prediction models for assisting and
prioritizing code audits [2], [3], [4], [5].

Most of these studies focus on predicting vulnerable-prone
modules (i.e., files or components) and can be beneficial
in some contexts. However, these predictions are generally
made too late. One of the suggested solutions is to apply
security testing on each phase of the development cycle. Early
detection is desirable as the later it gets into testing, the higher
the cost of finding and fixing a vulnerability would be.
Change-level predictions. Therefore, some researchers in-
troduced change-level prediction methods and concentrated
on predictions of vulnerability-contributing commits/changes
(VCCs) [6]. Similar to the field of software defect prediction,

the advantages of change-level predictions are [7]: (1) Predic-
tion is suitable for code snippets and thus smaller regions of
code needs inspection instead of huge files/components. (2)
Developers that are responsible for VCCs can easily be traced
and they can assist security experts or fix the security bugs
by themselves with all design decisions fresh in their minds.
(3) Predictions are made early and just-in-time as immediate
feedback is given once a change is submitted to the code base.
Challenges for change-level predictions. To our best knowl-
edge, no one has performed change-level vulnerability predic-
tions except [6], we attribute it to the following two challenges:

∙ The lack of a ground-truth dataset. It’s arduous to deter-
mine which code changes that indeed induced a vulnera-
bility due to the multiplicity of code changes. Therefore,
building a VCC ground-truth dataset is challenging and
requires considerable human effort.

∙ The disorderly structure of code changes. Code changes
could not retain the original structure and integrity like
files or components, hence many established measures
(e.g., code complexity, coupling, and cohesion) and com-
mercial analysis tools (e.g., Understand C++) are not
directly applicable.

Perl et al. [6] analyzed 66 open-source projects in GitHub
and presented a database with 640 VCCs. Compared to
Flawfinder [8], their results reduced many false positives with
same recall. However, they didn’t consider the actual effort in
code audits as some VCCs are huge (i.e., with thousands of
lines of modifications).
Our contributions. We therefore build a cost-aware change-
level vulnerability prediction model based on the code churn of
a change. Through the study of Mozilla Firefox project — one
of the most vulnerable open-source projects and has been the
target in a plethora of vulnerability studies yet most of them
focus on file/component-level predictions, our contributions
can be outlined as follows:

∙ We present a change-level code review tool – VulDigger,
to flag suspicious code changes immediately on the time
of submitting by deriving features from software defect
and vulnerability prediction models along with some new
metrics (e.g., the maximum changes has been made in the
past for files modified in a change). The precision of such
tool is extremely promising (i.e., 92%) for a cost-aware
software team.



∙ Besides, we further develop a regression model to locate
most skeptical changes with fewer lines to inspect. Such
model is capable of pinpointing 31% of all VCCs with
20% of the effort it would take to audit all changes. We
notice that six percent of the effort provides the best
return on investment as well.

∙ Finally, we improve the algorithm of mapping vulnera-
bilities to VCCs by placing more constraints to remove
false alarms based on Perl’s study [6] and then construct
a large-scale dataset for Mozilla Firefox. The dataset
contains 178,515 code changes, 1,203 VCCs, and 626
vulnerabilities. To our best knowledge, no large-scale of
such dataset has been available for Mozilla Firefox.

Organization. Section II introduces related work. In Section
III we elaborate the research experiments and methodology.
We present the results and evaluate the performance of our
tool in Section IV. Finally Section V reports the limitations
and threats to validity.

II. RELATED WORK

Finding potential vulnerabilities of software has gained
much attention from both academia and industry as it is a
fundamental and crucial problem in the field of computer
security. In this section, we review the prior studies focused
on vulnerability prediction models and risky code changes.

The concept of vulnerable components was first proposed
by [2] and they explored what patterns of imports and function
calls would mostly introduce vulnerabilities using frequent
pattern mining on early versions of Mozilla project. They
successfully leveraged support vector machine techniques to
predict vulnerabilities and reported an average precision of
70% and recall of 45%.

Then a wealth of research was conducted on vulnerable
function/file/component predictions. Code complexity was first
examined whether it can be an indicator of vulnerabilities in
Shin and Williams’s work [3].

Although they suggested that there is a slightly weak
correlation between code complexity and vulnerabilities with
regard to the Mozilla Javascript Engine, Shin et al. [4] further
evaluated the relationship of complexity, code churn, and
developer activity metrics with vulnerabilities. They performed
logistic regression to achieve an average recall of 80% as well
as a false alarm of 25% on both Mozilla Firefox and Red Hat
Enterprise Linux Kernel. Going beyond traditional metrics,
other research utilized features like text mining [5], [9].

There are only a few studies focused on finding vulnerabil-
ities on the level of code changes. Meneely et al. [10] first
introduced vulnerability-contributing commits and explored
their properties like code churn, interactive churn, and dis-
semination in the Apache HTTP project. They chose “git
bisect” instead of “git blame” to perform the mapping from
vulnerabilities to VCCs while the former approach requires
security test cases thus unavailable in our study. Bosu et al.
[11] also examined the various characteristics of VCCs like the
type of vulnerabilities, code churn, and developer experience
and employment on ten popular open-source projects.

Fig. 1. Overview of VulDigger: The learning phase constructs VCCs and
unclassified changes dataset and then feeds them into the classification
problem as well as the regression model. The output tool VulDigger then
predicts whether a new change is vulnerable and how many VCCs could be
found from various new changes with limited resources.

The closest work to our own is Perl et al. [6], who
combined repository metadata with text features to feed into
a generalized bag-of-words model and reported a precision of
60% and recall of 24%. Such a model is capable of reducing
much false positives whereas may suffer from inspecting huge
commits. We adopt an effort-aware code churn based model to
comprise this problem and find surprisingly that a significant
review effort could be saved.

III. EXPERIMENTS AND METHODOLOGY

In this section, we describe an overview of VulDigger, how
a database of VCCs from Mozilla Firefox is created and
which code change measures that have been derived. We detail
the data extraction and present both statistical analysis and
prediction techniques we have applied.

A. Overview

Fig. 1 gives an overview of our tool VulDigger with two
phases: a learning phase and a predicting phase. In the learn-
ing phase, Firefox Bugzilla, Mozilla Foundations Security
Advisories (MFSA) [12], and Firefox source code (Git Based)
are analyzed to retrieve a list of fixing changes. With the diff
generated from git version control system, we are capable
of mapping fixing changes to corresponding VCCs. VCCs
along with unclassified changes are then fed into developing
a classification and regression model and output our tool
VulDigger. In the predicting phase, when a new change is
submitted, VulDigger would immediately report whether it is
suspicious; when various new changes need to be reviewed,
VulDigger presents how many VCCs could be found with !
percent of total human effort.

B. Vulnerability-Contributing Changes

In order to distinguish code changes that contribute to a
vulnerability from ordinary changes, we first need to locate



git
Mozilla Firefox Source Code

git blame -w

Search 
BugID
in the
Change
Logs

Fig. 2. Mapping vulnerabilities to corresponding VCCs

those vulnerable code changes. The dataset released by Perl
[6] is an in-process database instead of the eventual data.
Thus we manage to create a VCC dataset of Firefox as it has
been studied in many previous file/component-level prediction
models, yet no large-scale of such dataset has been available
for Firefox to our knowledge.

Prior work of mapping defects/vulnerabilities to defect-
prone/vulnerability-contributing changes [10], [7], [6] fol-
lowed the same principles by SZZ algorithm [13] with differ-
ent implementations. We comply with this standard and adopt
a slightly different method for semiautomatically mapping
vulnerabilities to VCCs based on Perl et al.’s methodology [6].

The process of mapping a vulnerability documented in
MFSA to corresponding VCC(s) is illustrated in Fig. 2, and
the full details can be described as follows:

1) Find the identifier of a bug responsible for that vulnera-
bility based on the dataset shared by [14].

2) Take bug identifier 362213 for example, search for key-
words like “fix 362213”, “362213”, “Bug 362213”, and
“b=362213” in the change logs to locate fixing change
and manually check if it is indeed a fixing change instead
of simply adding extra tests for the bug or beautifying the
code.

3) For each fixing change, we use “git blame -w” for
mapping it to one or several VCCs.
∙ Ignore changes in tests, documentation, comments,

empty lines and not c/c++ files.
∙ For each deletion, blame the line that was deleted (the

deleted line has to be accessed from the change prior
to the fixing change).

∙ For every single line inserted, if keywords like “if”,
“goto”, “else”, “return”, “sizeof”, “break”, “NULL” or
function calls are included, blame one line before and
after the line.

∙ For every continuous block inserted, we blame one line
before and after the block if it is not a function state-
ment as function statement can be inserted anywhere.

4) Eventually, mark the change as VCC that has been
blamed most in the steps above. If multiple changes were
blamed for the same times, we manually check which one
or several changes are VCCs.

We choose MFSA [12] as it’s the official database and vul-
nerabilities have been acknowledged by Mozilla Foundation.
Compared to [6], we place more constraints when blaming and

in the last step, we manually examine the results rather than
blaming them both. What’s more, [6] didn’t consider the “-
w” option in the command git blame. The “-w” option means
to ignore whitespace changes when deciding where the lines
came from. Without the option, the marked VCC may simply
beautify the vulnerable code instead of actually introducing
it1.

To measure the accuracy of such mapping, we randomly
select 112 pairs of {fixing change, VCC} and find only 5
(i.e., 4.5%) changes labeled wrongly, possible reasons are that
some fixing changes only added functions without explicitly
invoking them and hence matched VCCs are not traceable2.
Since our prediction model can deal with noise, this error rate
is tolerable. Nevertheless, improving the automatic mapping
still remains as an interesting work.

At this point, we finally build a large dataset consisting of
626 vulnerabilities and 1,203 VCCs. Note that the number of
vulnerabilities is less than that of VCCs as some vulnerabilities
have various fixes thus mapped to multiple VCCs.

C. Change Measures

To predict whether a change would contribute to a future
vulnerability, we adopt various established metrics along with
some new metrics shown in Table I as many of them per-
form well in either defect prediction research or vulnerability
prediction models.

Table I lists each measure with its name, full description,
the rationale it based on, and the approach how we extract
it from the code base. These features are grouped into two
dimensions: code and metadata. For brevity reasons, we only
explain a few factors here. Most of previous research didn’t
differentiate TA/TD from CA/CD, while here we consider
other modifications of files not written in C/C++ also sup-
plement the complexity of a change. “Past changes” and
“Past developers” metrics have been utilized in [6] without
considering the distribution of them across different files thus
we supplant them with APC, MPC, APD, and MPD. Since ex-
tracting functions or variables from unprocessed C/C++ code
is difficult without dynamic parsing, similar to [2], [19], we
use several regular expressions to identify NRC, NAC, NRFC,
NAFC, NRF, NAF, NRVA, and NAVA in an automated fashion.

D. Statistical Analysis of Measures

Before fitting the aforementioned code change measures
to the learning-based model, we conduct several statistical
analysis to determine whether there is a statistically signifi-
cant difference between these measures related to VCC and
unclassified changes.

Fig. 3 illustrates the box plots of log-scaled values between
VCCs and unclassified changes for four representative mea-
sures: CA, SLOC, APC, and EXP. Here, value of 0 has been
substituted with 0.1 for the log transformation. As illustrated

1One of the fixing changes in VCCFinder’s database is
https://github.com/lxc/lxc/commit/67e5a20a and the inappropriately blamed
VCC is https://github.com/lxc/lxc/commit/c414be25.

2https://github.com/mozilla/gecko-dev/commit/a332f016



TABLE I
OVERVIEW OF CODE CHANGE MEASURES (PARTIALLY ADAPTED FROM [7])

Dim. Name Description Rationale and Related Work Extraction
M

et
ad

at
a

CA, CD Lines of C/C++ code Added/Deleted Code churn measures have been broadly applied in de-
fect/vulnerability prediction [4], [15], [6]. By parsing the patch of the change

TA, TD Total lines of code Added/Deleted Other languages of lines added/deleted also supplement the com-
plexity of a change. GitHub API [16]

SLOC Average source lines of code before the
change. Larger files are more complex and maybe more defect-prone [17]. https://github.com/flosse/sloc

NF, ND, NS Number of Files/Directories/Subsystems
(in C/C++) modified

Changes touching many files/directories/subsystems are more
likely to be vulnerability-prone [18].

Subsystem is defined as the root
directory.

Entropy Distribution of modified code across each
file

Higher entropy means the change is more fragmented and thus
more likely to be defect/vulnerability prone [7], [6].

!(" ) = −
∑!

"=1(#" ∗ $%&2#")
[7]

AGE Average time elapsed since last change More recent changes contribute to more defects. Git rev-list subcommand

EXP Developer experience Developers contribute little to the project may significantly in-
crease the defect/vulnerability probability [18], [10].

Number of changes the developer
has made before the change

FIX Whether or not a change is a vulnerability
fix

Changes that fix a defect are more likely to introduce new defects
[7]. Based on the dataset shared by [14]

APC, MPC Average/Maximum Past Changes made to
the current modified files

VCCs are statistically significantly touched more times than
ordinary changes [6]. Git rev-list subcommand

APD, MPD Average/Maximum Past different Devel-
opers for modified files Files touched by more developers are more suspicious [4]. Git rev-list subcommand

C
od

e

NRC, NAC Number of Removed/Added Conditions Missing or extraneous constraints may lead to vulnerabilities [19]. Regular expression

NRFC, NAFC Number of Removed/Added Function
Calls

Eliminating or invoking some function calls may expose to
vulnerabilities [19]. Regular expression

NRF, NAF, NMF Number of Removed/Added/Modified
Functions

Missing, extraneous, or modified functions may make the code
more secure or not [19].

Regular expression or by parsing
the patch of the change

NRVA, NAVA Number of Removed/Added Variable As-
signments

Variable assignments may attach or mistakenly drop some security
constraints. Regular expression

KEYWORDS 68 C/C++ keywords like “if”, “NULL” Keywords like “if”, “NULL” place more constraints that may obey
or violate security policies. Regular expression

in Fig. 3, VCCs tend to have larger C/C++ additions, slightly
larger lines of source code, modestly more past changes
and similar developer experience compared to unclassified
changes. Interestingly, developers with less experience seems
not contributing to more vulnerabilities and we ascribe it to
that maybe experienced developers lack security expertise as
well as new committers. All other change measures manifest
a similar tendency like CA or APC except for NRF and ND.

Considering that the distribution of VCCs and unclassified
changes are unknown, we apply the non-parametric hypothesis
test – Mann-Witney-Wilcoxon (MWW) test [20] to examine
whether a code change measure distributes differently in the
aspect of statistics. It is reliable for validating with the null
hypothesis that two samples come from the same population,
while the alternative hypothesis is that one of the population
tends to have larger value than the other.

MWW test is widely used in precedent vulnerability pre-
diction models [5], [6]. We adopt Cohen’s D [21] statistic to
ascertain the strength of MWW test. For brevity’s sake, we
omit to show the test results as most of them are statistically
significant except for NRF, ND, and EXP.

Although NRF, ND, and EXP are distributed similarly
between VCCs and unclassified changes, it doesn’t mean that
they might not be good indicators in a machine learning based
prediction model. We will decide whether to choose them in
the step of feature selection.

E. Prediction Techniques

The aforesaid code change measures provide some hints
for the characteristics of suspicious code changes. We thereby
feed them as features to two machine learning based models.

One of them is a classification model to distinguish VCC from
unflagged changes and the other is a regression model served
as a measurement of how much effort could be saved in the
process of security inspection.

1) Classification: Before using these extracted features in
the model, we need to preprocess them to remove highly
correlated factors and make a transformation to those highly
skewed data. With the aid of Spearman’s rank correlation
coefficient [22], we found that CA and TA, CD and TD,
NF and Entropy, and NAC and Keyword “If” are highly
correlated. Thereby, we exclude one of them and then apply
greedy forward variable selection. To deal with highly skewed
data, we employ the MaxAbsScaler preprocessing from the
tool scikit-learn [23].

Approach. Based on previous work, we choose a Random
Forests technique to predict vulnerability-contributing changes
as it outperforms other techniques like Naive Bayes, Logistic
Regression on our dataset when we set the number of trees
as 100. Random Forests is an ensemble learning method for
classification and regression that fits a multitude of decision
trees classifiers on diversified sub-samples from the dataset
and utilizes averaging to avoid over-fitting and improves the
accuracy. Besides, ensemble learning methods are known to
cope well with highly imbalanced data like ours, where VCCs
only represent a tiny percentage of all code changes (i.e.,
1203/178515 = 0.67%).

2) Regression: Considering that VCCs tend to be larger
changes (i.e., multiple additions and deletions of code) [6],
it still requires considerable human effort to locate the vul-
nerability once a huge code change labeled as suspicious.



(a) CA (b) SLOC (c) APC (d) EXP

Fig. 3. Comparison of metric values for VCCs and unclassified changes.

Therefore, similar to prior work [24], we introduce an effort-
aware model to assess how many VCCs could be caught with
limited resources for security testing compared to a random
predictor, the latter is an average model where the amount of
VCCs could be found with the same proportion of effort.

Approach. Assume that only 20% of effort is available
for reviewing the suspect changes flagged by our prediction
model. Then we determine how many changes are VCCs from
the most risky changes with fewer lines to inspect. In this
model, the dependent variable $(!) is defined as follows:

$(!) =
% (!)

&''()*(!)
(1)

Here if the change ! is predicted as a VCC, then % (!) is 1
and 0 otherwise. &''()*(!) is measured by the total lines
modified (i.e., CA + CD) in C/C++ files from a change !.
As for independent variables, similar code change features in
the classification model are adopted except for TA, TD, CA,
and CD since CA and CD together make up the effort in the
dependent variable and TA and TD is highly correlated with
CA and CD respectively.

Then we use a Random Forests regression model to predict
$(!) and prioritize the list of code changes to review by
ranking the value of $(!) in descending order. With 20%
effort off the whole list, we calculate the number of VCCs
contained in these most suspicious changes and compare the
result with the baseline – the random predictor. In next part
we discuss the results as well as the evaluation of our models.

IV. RESULTS AND EVALUATION

We present our results of experiments and evaluate the
performance of our classification and regression models in
various ways. We elaborate the performance indicators used
for our approach initially, then the validation techniques would
be detailed along with illustrated results. Finally we make
comparisons to existing tools.

A. Performance Indicators

For the binary classification problem, we measure the per-
formance using precision and recall as they have been broadly
used in the literature of vulnerability prediction [2], [25], [6].
Additionally, to assess the effort of reviewing suspect code
changes, we introduce file inspection ratio and line inspection
ratio criteria like [25]. For the regression problem, we adopt

cumulative lift chart to examine the percentage of total VCCs
that could be found with limited effort.

Before explaining these indicators in detail, we need to
elucidate that there are four types of outcomes in a binary
classification problem. Correct results are called True Positives
(+, , vulnerable changes correctly identified as vulnerable)
and True Negatives (+- , unclassified changes correctly pre-
dicted as unclassified). There are also two kinds of errors:
False Positives (., ) and False Negatives (.- ). A .,
happens when an unclassified change is incorrectly identified
as vulnerable and .- denotes the number of vulnerable
changes incorrectly identified as unclassified.

Precision: The precision measures the percentage of pre-
dicted VCCs that are correctly classified as vulnerable. Higher
precision is desirable as fewer false alarms would generate,
hence, less time is wasted on scrutinizing changes that are
actually clean. It is defined in Eq (2):

,)/0121(3 = +,/(+, + ., ) (2)

Recall: We also concern about the recall that represents the
percentage of actual VCCs correctly identified as vulnerable.
Higher recall is preferable as it means more VCCs could be
found. Recall is defined in Eq (3):

4/0566 = +,/(+, + .-) (3)

File Inspection Ratio (FIR): Some code changes contain
modifications in various files and inevitably complicated to
understand. Besides, it would be ineffective if reviewers have
to inspect too many files only to find a few vulnerabilities. We
interpret the number of modified C/C++ files of a change that
is a TP as +,!" . .,!" , +-!" , and .-!" are similarly
defined. Thence we define FIR as the percentage of files to be
inspected based on the results of prediction in Eq (4):

.74 =
+,!" + .,!"

+,!" + .,!" + +-!" + .-!"
(4)

Lines Inspection Ratio (LIR): Similarly with files, a larger
code change may require more effort than changes with fewer
lines modified. Accordingly we additionally measure LIR (i.e.,
the percentage of lines of source code to be inspected in terms
of predicted results). We define +,#$% as the total lines of
C/C++ source code modified in a change that is a TP, similarly



with .,#$% , +-#$% , and .-#$% . And LIR is calculated
in Eq (5):

874 =
+,#$% + .,#$%

+,#$% + .,#$% + +-#$% + .-#$%
(5)

B. Experimental Results

When applying machine learning techniques, we perform
a temporal time split between the training and test data
instead of classic cross validation. As it is an instance of
“future prediction” and generally considered better than cross
validation as the former simulates a realistic scenario usage.

Since the BugID-vulnerability data shared by [14] only
contain verified information as of the year of 2014, we collect
code changes of Firefox as of 2014 and only focus on those
with C/C++ files modified. We pick a specific time to contain
two thirds of all VCCs as training data. And a short description
of training and test data is listed in Table II.

TABLE II
DISTRIBUTION OF CHANGES AND VCCS.

Dataset

Training Test Total

VCCs 802 401 1,203
Unclassified changes 117,120 60,192 177,312

For the classification problem, we argue that the precision
and LIR are the most important metrics as these two features
determine how much effort of reviewing the code could be
saved for security researchers. Fig. 4 shows the detection
performance with different feature sets. As can be seen, the
classifier that combined code and metadata metrics outper-
forms the classifiers which only operate on code or metadata
features, in both measurements. Moreover, metadata features
are slight better than code features in terms of precision while
more lines of code needs inspection. We will further make
comparison to existing tools in the next part thus omitted here.

While for the regression problem, as shown in Fig. 5, there
is a nearly 10 percent gap between our effort-aware model and
random predictor when no more than 80% effort is available.
We observe that the performance of our tool is slightly poorer
than that of random predictor when effort > 80%, but this
condition is considered to be impractical since 80% effort
would require a quite huge amount of lines to inspect thus
omitted here from a realistic point of view.

In terms of only 20% effort available for reviewing sus-
picious code changes flagged by VulDigger, we find that
VulDigger could successfully identify 123 VCCs (i.e., 31%
of all VCCs in the test data) compared to 20% of all VCCs
found by the random predictor in an ideal setting, which is
a 55% improvement and we prove that such tool is effective
in locating vulnerabilities in the process of security testing.
By comparison, [7] detected less than 20% defect-inducing
changes when 20% effort was spent on the Mozilla project,
i.e., their model is even worse than a random predictor.

To answer another interesting problem that how many
percentage of effort provides the best return on investment,

Fig. 4. Detection performance of VulDigger using different feature sets.

Fig. 5. Effort-aware cumulative lift chart.

we use the number of detected VCCs divided by the required
effort as a measurement. This measurement is reflected as the
slope of the curve in Fig. 5 and we can observe that 6% effort
provides the best return on investment.
C. Comparison to FlawFinder

Similar to [6], we additionally compare our findings against
Flawfinder [8] version 1.31. Flawfinder is a mature static
C/C++ source code scanner and marks lines in a source code
file with potential vulnerabilities. To compare the performance,
we run Flawfinder on each modified or added file of a code
change and mark a change as vulnerable if Flawfinder reports
at least a flaw in one of lines the change inserted.

We then evaluate the classification performance between our
tool and Flawfinder against the test dataset. Table III shows
the contingency table as well as precision, recall, FIR, and
LIR for both tools. As stated before, the precision and LIR
are two most important metrics in this table. While a high
recall is theoretically meaning that more vulnerabilities would
be found, in reality they would be buried in a lot of false
positives [6]. So we accept that we will not find all of VCCs
but provide a more realistic solution for security testing.

As shown in Table III, our tool VulDigger significantly
outperforms Flawfinder in most configuration settings. The
most practical result comes with a remarkably high precision
(i.e., 92%) and an extremely low LIR (i.e., 7%), which means
by reviewing only 60 of 60,593 changes, we can locate 55
VCCs with only 5 false alarms. As for the same precision,
VulDigger indeed locates more than twice VCCs while more
files and lines have to be reviewed. In terms of the same
recall, VulDigger presents a precision of 18% compared to
Flawfinder’s precision of 3% and 27% = (0.44 − 0.32)/0.44
effort can be saved with our tool. We also examine when



TABLE III
COMPARISON OF FLAWFINDER AND VULDIGGER. MEASUREMENTS IN THE FIRST ROW IS DEFINED IN SECTION IV-A.

True Positive False Positive False Negative True Negative Precision Recall FIR LIR

Flawfinder 89 2,495 312 57,697 0.03 0.22 0.13 0.44

VulDigger
- Most practical result 55 5 346 60,187 0.92 0.14 0.02 0.07
- With same precision 197 6,255 204 53,937 0.03 0.49 0.28 0.62
- With same recall 88 393 313 59,799 0.18 0.22 0.07 0.32
- With same LIR 129 1,714 272 58,478 0.07 0.32 0.13 0.45

the same effort (i.e., LIR) is applied, VulDigger can locate
45% = (0.32 − 0.22)/0.22 more VCCs and 133.3% =
(0.07 − 0.03)/0.03 more accuracy with the comparison of
Flawfinder. In brief, VulDigger can be applied in a more
realistic situation than Flawfinder.

We intend to compare our tool with the state-of-the-art
approach [6] on the same dataset, however, their data is
temporarily unavailable and we may remain it as future work.

V. LIMITATIONS AND THREATS TO VALIDITY

Internal validity. One may notice in VCCs that only
acknowledged vulnerabilities with linked fixing changes can
be mapped to corresponding VCCs. Whereas, 1203 VCCs are
large enough (compared to 640 VCCs in [6]) for training
the classifier and wrongly labeled VCCs are eliminated by
manual inspection. Besides, some code changes are refactoring
or repeating previous modifications, thus may compromise the
precision of our tool (as shown in Table III). Further studies on
identifing these changes might further improve our predictions.

External validity. We focus on C/C++ code changes as
we want to ensure comparability between the features like
keywords. More studies are necessary to generalize our results
to other types of applications and programming languages.

ACKNOWLEDGMENT

The work was supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 61472249, 61572192,
61571191) and International Science & Technology Coopera-
tion & Exchange Projects of Shaanxi Province (2016KW-038).

REFERENCES

[1] “The heartbleed bug,” [Accessed 20-March-2017]. [Online]. Available:
http://heartbleed.com/

[2] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007,
pp. 529–540.

[3] Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement. ACM, 2008, pp. 315–317.

[4] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

[5] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on
Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.

[6] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl,
and Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 426–437.

[7] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757–773, 2013.

[8] “Flawfinder homepage,” [Accessed 20-March-2017]. [Online].
Available: http://www.dwheeler.com/flawfinder/

[9] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in Software Reliability
Engineering (ISSRE), 2014 IEEE 25th International Symposium on.
IEEE, 2014, pp. 23–33.

[10] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary,
and B. Spates, “When a patch goes bad: Exploring the properties
of vulnerability-contributing commits,” in 2013 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 65–74.

[11] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying
the characteristics of vulnerable code changes: An empirical study,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 257–268.

[12] “Mozilla foundations security advisories,” [Accessed 31-March-2017].
[Online]. Available: https://www.mozilla.org/en-US/security/advisories/

[13] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in ACM sigsoft software engineering notes, vol. 30, no. 4. ACM,
2005, pp. 1–5.

[14] F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-life vulnerabilities: a
study on firefox evolution, its vulnerabilities, and fixes,” in International
Symposium on Engineering Secure Software and Systems. Springer,
2011, pp. 195–208.

[15] E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-grained source
code changes and code churn for bug prediction,” in Proceedings of the
8th Working Conference on Mining Software Repositories. ACM, 2011,
pp. 83–92.

[16] “Github api v3 | github developer guide,” [Accessed 12-March-2017].
[Online]. Available: https://developer.github.com/v3/

[17] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 293–304,
2009.

[18] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[19] M. Piancó, B. Fonseca, and N. Antunes, “Code change history and soft-
ware vulnerabilities,” in Dependable Systems and Networks Workshop,
2016 46th Annual IEEE/IFIP International Conference on. IEEE, 2016,
pp. 6–9.

[20] M. P. Fay and M. A. Proschan, “Wilcoxon-mann-whitney or t-test? on
assumptions for hypothesis tests and multiple interpretations of decision
rules,” Statistics surveys, vol. 4, p. 1, 2010.

[21] R. E. McGrath and G. J. Meyer, “When effect sizes disagree: the case
of r and d.” Psychological methods, vol. 11, no. 4, p. 386, 2006.

[22] J. L. Myers, A. Well, and R. F. Lorch, Research design and statistical
analysis. Routledge, 2010.

[23] “scikit-learn: Machine learning in python,” [Accessed 30-March-2017].
[Online]. Available: http://scikit-learn.org/stable/

[24] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on. IEEE, 2010, pp. 107–116.

[25] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, 2013.


