Limin Yang

540-998-9158 | liminy2@illinois.edu | https://liminyang.web.illinois.edu | GitHub: whyisyoung | Google Scholar

EDUCATION

University of Illinois (UIUC), Ph.D. in Computer Science, advisor: Gang Wang	Aug. 2019 – Aug. 2023
Virginia Tech, Ph.D. in Computer Science, advisor: Gang Wang	Aug. 2018 – Jul. 2019
East China Normal University, M.S. Study in Computer Science	Sep. $2015 - Jun. 2018$
East China Normal University, B.Eng. in Computer Science	Sep. $2011 - Jun. 2015$

INTERNSHIPS

- IBM Research, Visiting Scholar (Research Intern), Hybrid Cloud Team May 2022 – Aug. 2022
 - Cleaned a noisy real-world network intrusion dataset (25 million traffic/day) from National Supercomputing Center
 - Semi-automatically labeled the dataset, defined 65 features for network logs, and summarized 279 security incidents
 - Built anomaly detection models (per host) with LSTM autoencoder and applied on 2 past real-world attacks

TikTok, Security Engineering Intern, Threat XDR Team

- Lark Email Spam Rule System: detected 5,000 more spam/week by adding 25 patterns and 20 rules
- Protected 50 client companies and 1 million emails/week by allowlisting 300 domains with semi-automation
- Clustered similar emails based on user actions and increased the size of user labeled ground-truth by 100%
- Contributed to 2 urgent incidents response: a vendor offline and a spam campaign

Selected Projects

Sep. 2020 – Jan. 2022 Selective ML Backdoor Attack | Published in IEEE S&P'23

- Proposed a new backdoor attack against Android malware classifiers: only a specific malware family is misclassified
- Achieved 80%–98% attack success rates by alternate optimization with a customized loss function
- Defeated 4 recent backdoor defenses while traditional backdoor cannot bypass the detections

Concept Drift Detect and Explain | Published in USENIX Security'21 Jun. 2019 – Jun. 2020

- Leveraged contrastive learning and autoencoder to detect concept drift samples from previously unseen classes
- Explainable AI: proposed a novel distance-based explanation to find 45/1000 features making a sample outlier
- Increased detection rate to $F_1 = 96\%$ versus state-of-the-art ($F_1 <= 80\%$) on malware and network datasets
- Identified 161/165 unseen families on a company Blue Hexagon's Windows PE malware database

VirusTotal Reliability | Published in IMC'19 and USENIX Security'20 Feb. 2019 – Nov. 2019

- Controlled 66 phishing sites to measure the label inconsistencies and dynamics between vendors and VirusTotal
- Measured the label dynamics of 14,000+ PE malware from 65 vendors via daily snapshots over one year
- Offered insights and suggestions on a more proper use of VirusTotal (received 100+ citations in total)

SELECTED PUBLICATIONS (CITATIONS: 400+, H-INDEX: 9)

[Submitted to IEEE S&P'24] 1st author. Title anonymized for double-blind submission.

[IEEE S&P'23] 1st author. "Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers".

[IEEE S&P'23] 3rd author. "Practitioners' Perception of ML-Based Security Tools and Explanations".

[USENIX Security'21] 1st author. "CADE: Detecting and Explaining Concept Drift Samples for Security Applications". Artifact Evaluated.

[Deep Learning and Security'21] 1st author. "BODMAS: An Open Dataset for Learning based Temporal Analysis of PE Malware". Dataset requested by 85 institutions (about 120 research groups).

[USENIX Security'20] 3rd author. "Measuring and Modeling the Label Dynamics of Online Anti-Malware Engines". [IMC'19] 2nd author. "Opening the Blackbox of Virus Total: Analyzing Online Phishing Scan Engines".

[USENIX Security'18] 3rd author. "Understanding the Reproducibility of Crowd-reported Security Vulnerabilities.".

Technical Skills

Python, C++, C, Shell, SQL (Postgres, Hive), Ruby
ML-based malware detection, Network IDS, Spam, Phishing, Bug reproduction
Keras, Tensorflow, PyTorch
Hadoop, PySpark, MongoDB, Flask, Scrapy, Alexa Skills, Elasticsearch, Ruby on Rails
Linux, Git, VS Code, Jupyter Notebook, tmux, AWS, Vim, Docker, VirusTotal, Nmap
Scikit-learn, LightGBM, NumPy, pandas, Matplotlib

May 2021 – Aug. 2021