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Why Open Malware Dataset?

• Facilitate new research to resolve open challenges 

• Easily keep track of the state-of-the-art 

• Security community lacks benchmark datasets
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1. A Simple Framework for Contrastive Learning of Visual Representations, ICML, 2020. 
2. Gradient-based learning applied to document recognition, IEEE, 1998.

MNIST CIFAR-10 ImageNet



Why Releasing Malware Dataset is Hard?

 Legal restrictions 
• Benign binaries are often protected by copyright laws 

  Labeling costs and difficulties 
• Time-consuming even for experts 

• Anti-malware scanners’ results may be proprietary 

 Security liability and precautions 

• Risky to share malware to non-infosec audience 

 Constant need for new datasets 

• Malware evolves and new malware family appears

3Ember: An Open Dataset for Training Static PE Malware Machine Learning Models, arXiv, 2018.



What We Did

 Legal restrictions 
• Release feature vectors (malware + benign); and malware binaries 

  Labeling costs and difficulties 
• In-house analysis + aggregate multiple antivirus vendors’ labels  

• ~1% labeled via manual analysis 

 Security liability and precautions 

• We only share disarmed malware with researchers upon request 

 Constant need for new datasets 

• We release a more recent dataset sampled from Blue Hexagon
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Public PE Malware Datasets
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Dataset Malware 
Time # Families # Samples # Benign # Malware Malware 

Binaries
Feature 
Vectors

Microsoft N/A  
(Before 2015)

9 10,868 0 10,868 ◑ ◯

UCSB-
Packed

01/2017–
03/2018 N/A 341,445 109,030 232,415 ● ◯

Ember* 01/2017–
12/2018 ◑ 2,050,000 750,000 800,000 ◯ ●

SOREL-20M
01/2017–
04/2019 N/A 19,724,997 9,762,177 9,962,820 ● ●

BODMAS 08/2019–
09/2020

581 134,435 77,142 57,293 ● ●

* Ember combines Ember2017 and Ember2018 and duplicates were removed.
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Dataset Malware 
Time # Families # Samples # Benign # Malware Malware 

Binaries
Feature 
Vectors

Microsoft N/A  
(Before 2015)

9 10,868 0 10,868 ◑ ◯

UCSB-
Packed

01/2017–
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BODMAS 08/2019–
09/2020
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* Ember combines Ember2017 and Ember2018 and duplicates were removed.

Consistent format for 
longitudinal analysis



Outline

• Introduction 

• Open problem: concept drift in binary classifiers across time 

• Open problem: concept drift in malware family attribution
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A Binary Malware Classification Model

1. Train

7

Benign Malware 



A Binary Malware Classification Model

1. Train

8

2. Predict

“Benign”

Benign

Benign Malware 



A Binary Malware Classification Model

1. Train

9

2. Predict

Malware

“Malware”

Benign Malware 



A Binary Malware Classification Model

1. Train

10

2. Predict

Malware

Benign Malware 



A Binary Malware Classification Model

1. Train

10

2. Predict

Malware

Benign Malware 

“Benign”



A Binary Malware Classification Model

1. Train

10

2. Predict

Malware

Concept Drift!  
(In-class evolution)Benign Malware 

“Benign”❌



A Binary Malware Classification Model

1. Train

11

2. Predict

Benign

Benign Malware 



A Binary Malware Classification Model

1. Train

11

2. Predict

Benign

Benign Malware 

“Malware”



A Binary Malware Classification Model

1. Train

11

2. Predict

Benign

Concept Drift!  
(In-class evolution)Benign Malware 

“Malware”❌



Experiment: Concept Drift Across Datasets
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Experiment: Concept Drift Across Datasets
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2017 2018 2019 2020

Train Val
BODMAS  

(12 testing months)
Ember

+

Gradient Boosted Decision Tree 
(GBDT)

Prediction

UCSB-Packed

Train Val

SOREL-20M*

Train Val

* For SOREL-20M, we use their pre-trained GBDT model and DNN model due to resource and time constraints.



Impact of Concept Drift

15

Phase
Ember-GBDT UCSB-GBDT SOREL-GBDT SOREL-DNN

FPR F1 FPR F1 FPR F1 FPR F1

Val 0.10% 98.6% 0.10% 92.1% 0.10% 98.8% 0.10% 98.0%
10/19 0.00% 94.9% 0.03% 71.1% 0.09% 97.7% 0.31% 94.8%
11/19 0.00% 95.8% 0.02% 81.0% 0.05% 98.1% 0.40% 96.2%
12/19 0.01% 96.6% 0.06% 84.9% 0.24% 98.3% 0.45% 96.8%
01/20 0.18% 93.7% 0.12% 78.0% 2.14% 96.3% 2.27% 95.4%
02/20 0.07% 93.4% 0.33% 68.3% 4.82% 95.7% 6.68% 93.2%
03/20 0.01% 95.8% 0.01% 75.3% 0.13% 98.1% 0.35% 96.0%
04/20 0.00% 97.0% 0.02% 80.8% 0.14% 98.9% 0.26% 97.3%
05/20 0.00% 97.5% 0.05% 85.7% 0.13% 98.6% 0.29% 96.0%
06/20 0.01% 97.8% 0.04% 83.2% 0.22% 98.9% 0.43% 96.7%
07/20 0.01% 96.4% 0.03% 66.2% 0.07% 98.7% 0.33% 93.9%
08/20 0.01% 92.9% 0.02% 47.2% 0.06% 96.0% 0.10% 85.9%
09/20 0.02% 92.1% 0.03% 56.0% 0.08% 95.7% 0.13% 82.9%
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             1. Most classifiers got 98% F1 on validation; but degraded (sometimes a lot) on BODMAS. 
 2. Concept drift could be discrete events instead of a monotonic trend over time.
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Mitigation Strategy 1: Incremental Retraining
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 1. Labeling 1% samples per month, all the F1 scores surpass 97%. 
 2. Different sampling methods have close performance.

2017 2018 2019 2020

Val

Ember BODMAS
Add 1% and test 
on next month

...
Train
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Mitigation Strategy 2: Train with New Data
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2019 2020

BODMAS

Train and Val

 1. Labeling new data and train a new classifier indeed improve the F1 score. 
 2. A slight downward trend still exists, indicating the impact of concept drift.

Take 1 month



Breakdown of False Negatives
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Testing month FNR Existing Family FNR Unseen Family FNR
10/19 4.8% 3.4% 43.0%
11/19 4.0% 2.7% 35.4%
12/19 1.7% 1.4% 16.7%
01/20 3.0% 2.2% 27.0%
02/20 3.1% 2.4% 26.2%
03/20 4.2% 3.6% 20.0%
04/20 2.7% 2.5% 8.1%
05/20 3.5% 2.7% 9.4%
06/20 2.6% 2.3% 6.3%
07/20 5.5% 5.2% 6.8%
08/20 5.7% 4.8% 15.6%
09/20 7.2% 5.8% 16.4%
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 1. Existing families indeed produce false negatives, e.g., malware variants. 
 2. Unseen families are more likely to be misclassified than existing families.



Outline

• Introduction 

• Open problem: concept drift in binary classifiers across time 

• Open problem: concept drift in malware family attribution
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Close-world VS. Open-world

• Close-world 

• Both training and testing sets contain N families 

• Open-world 

• N is large and increases over time
• Malware from previously unseen families

21

FireEye Annual Report 2020 
“1.1 million malware samples per day” 

“41% malware families never seen before”



Experiment: Concept Drift in Family Attribution
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Top-2 acc: 
Likelihood that top-2 

predicted families 
contain a sample’s 

true family

N = 10 (known) 
Known: testing set only 
includes samples from 10 
known training families



Impact of Concept Drift
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N = 10 (all) 
all: all testing samples, 
includes previously 
unseen families



Impact of Concept Drift
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N = 40 (known) 
Larger number of 
families is harder to train



Impact of Concept Drift
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N = 40 (all) 
Larger N means we have 
fewer unseen families 
during testing, thus 
better than N = 10 (all) 



Impact of Concept Drift
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N = 80 (known) 
Further increasing N 
does not give a worse 
performance because 
later families do not 
have many samples
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N = 80 (all) 
Fewer unseen families 
during testing making it 
better than N = 40 (all)



Impact of Concept Drift
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N = 80 (all) 
Fewer unseen families 
during testing making it 
better than N = 40 (all)

1. Unseen families significantly degrade the performance of a close-world classifier. 
2. It becomes harder to train a decent classifier when N increases.



Open Problems and Challenges

• Out-of-distribution detection against malware evolution and unseen family 

• Scale to large number of malware families and relationships among families 

• Combat real-world adversarial samples of malware binaries
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Conclusion

• We release a new PE malware dataset with timestamp and malware families 

• Concept drift poses challenges for both malware detection and attribution 

• Unseen families are more likely to be misclassified than known families
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Thank you! 
Homepage 

https://liminyang.web.Illinois.edu 

Features and metadata open to public 

Malware binaries available upon request 

https://whyisyoung.github.io/BODMAS/ 

Check out our upcoming USENIX Sec’21 paper 
• CADE: Detecting and Explaining Concept Drift Samples for Security Applications

https://liminyang.web.illinois.edu/
https://whyisyoung.github.io/BODMAS/
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Backup Slides
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Reasons of the Drop
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A family called “sfone” is 
under-trained, only 52 

samples in training. 
However, we saw a burst 
arrival of “sfone” in May 
and June (2,491 samples)


