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Why Open Malware Dataset?

« Facilitate new research to resolve open challenges

 Easily keep track of the state-of-the-art

o Security community lacks benchmark datasets
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Why Releasing Malware Dataset is Hard?

e Legal restrictions
« Benign binaries are often protected by copyright laws

% % Labeling costs and difficulties

= « Time-consuming even for experts

o Anti-malware scanners’ results may be proprietary
Security liability and precautions

« Risky to share malware to non-infosec audience
Constant need for new datasets

« Malware evolves and new malware family appears

Ember: An Open Dataset for Training Static PE Malware Machine Learning Models, arXiv, 2018.



What We Did

2
O

Legal restrictions

« Release feature vectors (malware + benign); and malware binaries

Labeling costs and difficulties
« In-house analysis + aggregate multiple antivirus vendors’ labels

e ~“1% labeled via manual analysis
Security liability and precautions
« We only share disarmed malware with researchers upon request

Constant need for new datasets

o We release a more recent dataset sampled from Blue Hexagon



Public PE Malware Datasets

Dataset Ma!ware # Families # Samples # Benign # Malware M.alw?re Feature
Time Binaries Vectors
Microsoft (Befo':'é’; s O 10888 0 10,368 D O
Ft; Eizd 001; /22001178" N/A 341,445 109,030 232,415 ® O
Ember* 0112//2200117; q) 2,050,000 750,000 800,000 O )
SOREL-20M OOZ/ZZOOIE N/A 19,724,997 9,762,177 9,962,820 ® o
BODMAS 0089/ /22001290' 581 134,435 77,142 57,293 ® ®

* Ember combines Ember2017 and Ember2018 and duplicates were removed.



Public PE Malware Datasets

Dataset Ma!ware # Families # Samples # Benign # Malware M.alw?re Feature
Time Binaries Vectors
. N/A
Microsoft (Before 2015) . 10 88 0 10,868 D O
UCSB- | 01/2017- EX|§t|ng atasets are . o -
Packed | 03/2018 slightly outdated ‘
01/2017-
E S
Ember 12/2018 D 2,050,000 750,000 800,000 O ®
01/2017-
SOREL-20M | 019 N/A 19,724,997 9,762,177 9,962,820 () o
BODMAS | 08/2015- 581 134,435 77,142 57,293 ® ®

09/2020

* Ember combines Ember2017 and Ember2018 and duplicates were removed.



Public PE Malware Datasets

Dataset Ma!ware # Families | # Samples # Benign # Malware M.alw?re Feature
Time Binaries Vectors
. N/A
Microsoft (Before 2015) D O
Most do not have
UCSB- 01/2017- -
Packed  03/2018 curated families ® O
01/2017-
k
Ember 12/2018 2,050,000 750,000 800,000 O ®
01/2017-
SOREL-20M 04/2019 19,724,997 9,762,177 9,962,820 o ()
08/2019-
BODMAS 09/2020 134,435 77,142 57,293 ® ®

* Ember combines Ember2017 and Ember2018 and duplicates were removed.



Public PE Malware Datasets

Dataset Ma!ware # Families # Samples # Benign # Malware M.alw?re Feature
Time Binaries Vectors
: N/A
Microsoft (Before 2015] 9 10,868 0 10,868 D O
UCSB- 01/2017-
N/A 341,445 109,030 232,415
Packed 03/2018 / ® =
Ember* 0112//2200117; D 2,050,000 Consistent format for
longitudinal analysis
SOREL-20M 01/2017- N/A 19,724,997
04/2019 PheT
08/2019-
BODMAS 09/2020 581 134,435 77,142 57,293

* Ember combines Ember2017 and Ember2018 and duplicates were removed.




Outline
e Introduction
e Open problem: concept drift in binary classifiers across time

e Open problem: concept drift in malware family attribution



A Binary Malware Classification Model

1. Train

.

Benign Malware
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Experiment: Concept Drift Across Datasets

2017 2018

Train with 5 random seeds

2019

2020

4 )
=eh 3u
\_ Y,

Gradient Boosted Decision Tree
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Experiment: Concept Drift Across Datasets
2017 2018 2019 2020
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Experiment: Concept Drift Across Datasets

2017 2018 2019 2020

BODMAS
(12 testing months)

UCSB-Packed p \ 4
Train with 5 random seeds
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Experiment: Concept Drift Across Datasets

2017 2018 2019 2020

BODMAS
(12 testing months)

I
\ 4
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SOREL-20M*

Gradient Boosted Decision Tree
(GBDT)
* For SOREL-20M, we use their pre-trained GBDT model and DNN model due to resource and time constraints.
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Impact of Concept Drift

Ember-GBDT UCSB-GBDT SOREL-GBDT SOREL-DNN
Phase
FPR F, FPR Fi FPR F. FPR Fi

Val 0.10% 98.6% 0.10% 92.1% 0.10% 98.8% 0.10% 98.0%
10/19 0.00% 94.9% 0.03% 71.1% 0.09% 97.7% 0.31% 94.8%
11/19 0.00% 95.8% 0.02% 81.0% 0.05% 98.1% 0.40% 96.2%
12/19 0.01% 96.6% 0.06% 84.9% 0.24% 98.3% 0.45% 96.8%
01/20 0.18% 93.7% 0.12% 78.0% 2.14% 96.3% 2.27% 95.4%
02/20 0.07% 93.4% 0.33% 68.3% 4.82% 95.7% 6.68% 93.2%
03/20 0.01% 95.8% 0.01% 75.3% 0.13% 98.1% 0.35% 96.0%
04/20 0.00% 97.0% 0.02% 80.8% 0.14% 98.9% 0.26% 97.3%
05/20 0.00% 97.5% 0.05% 85.7% 0.13% 98.6% 0.29% 96.0%
06/20 0.01% 97.8% 0.04% 83.2% 0.22% 98.9% 0.43% 96.7%
07/20 0.01% 96.4% 0.03% 66.2% 0.07% 98.7% 0.33% 93.9%
08/20 0.01% 92.9% 0.02% 47.2% 0.06% 96.0% 0.10% 85.9%
09/20 0.02% 92.1% 0.03% 56.0% 0.08% 95.7% 0.13% 82.9%
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Impact of Concept Drift

Phase

Val
10/19
11/19
12/19
01/20
02/20
03/20
04/20
05/20
06/20
07/20
08/20
09/20

Ember-GBDT
FPR F,
0.10% 98.6%
0.00% 94.9%
0.00% 95.8%
0.01% 96.6%
0.18% 93.7%
0.07% 93.4%
0.01% 95.8%
0.00% 97.0%
0.00% 97.5%
0.01% 97.8%
0.01% 96.4%
0.01% 92.9%
0.02% 92.1%

UCSB-GBDT
FPR F,
0.10% 92.1%
0.03% 71.1%
0.02% 81.0%
0.06% 84.9%
0.12% 78.0%
0.33% 68.3%
0.01% 75.3%
0.02% 80.8%
0.05% 85.7%
0.04% 83.2%
0.03% 66.2%
0.02% 47.2%
0.03% 56.0%

SOREL-GBDT
FPR F
0.10% 98.8%
0.09% 97.7%
0.05% 98.1%
0.24% 98.3%
2.14% 96.3%
4.82% 95.7%
0.13% 98.1%
0.14% 98.9%
0.13% 98.6%
0.22% 98.9%
0.07% 98.7%
0.06% 96.0%
0.08% 95.7%

SOREL-DNN
FPR F,
0.10% 98.0%
0.31% 94.8%
0.40% 96.2%
0.45% 96.8%
2.27% 95.4%
6.68% 93.2%
0.35% 96.0%
0.26% 97.3%
0.29% 96.0%
0.43% 96.7%
0.33% 93.9%
0.10% 85.9%
0.13% 82.9%
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Impact of Concept Drift

Ember-GBDT UCSB-GBDT SOREL-GBDT SOREL-DNN
Phase
FPR F, FPR Fi FPR F. FPR Fi

Val 0.10% 98.6% 0.10% 92.1% 0.10% 98.8% 0.10% 98.0%
10/19 0.03% 71.1% 0.09% 97.7% 0.31% 94.8%
11/19 0.02% 81.0% 0.05% 98.1% 0.40% 96.2%
12/19 0.06% 84.9% 0.24% 98.3% 0.45% 96.8%
01/20 0.12% 78.0% 2.14% 96.3% 2.27% 95.4%
02/20 0.33% 68.3% 4.82% 95.7% 6.68% 93.2%
03/20 0.01% 75.3% 0.13% 98.1% 0.35% 96.0%
04/20 0.02% 80.8% 0.14% 98.9% 0.26% 97.3%
05/20 0.05% 85.7% 0.13% 98.6% 0.29% 96.0%
06/20 0.04% 83.2% 0.22% 98.9% 0.43% 96.7%
07/20 0.03% 66.2% 0.07% 98.7% 0.33% 93.9%
08/20 0.02% 47.2% 0.06% 96.0% 0.10% 85.9%
09/20 0.03% 56.0% 0.08% 95.7% 0.13% 82.9%

15



Impact of Concept Drift

Ember-GBDT UCSB-GBDT SOREL-GBDT SOREL-DNN
Phase
FPR F, FPR Fi FPR F. FPR Fi

Val 0.10% 98.6% 0.10% 92.1% 0.10% 98.8% 0.10% 98.0%
10/19 0.00% 94.9% 0.09% 97.7% 0.31% 94.8%
11/19 0.00% 95.8% 0.05% 98.1% 0.40% 96.2%
12/19 0.01% 96.6% 0.24% 98.3% 0.45% 96.8%
01/20 0.18% 93.7% 2.14% 96.3% 2.27% 95.4%
02/20 0.07% 93.4% 4.82% 95.7% 6.68% 93.2%
03/20 0.01% 95.8% 0.13% 98.1% 0.35% 96.0%
04/20 0.00% 97.0% 0.14% 98.9% 0.26% 97.3%
05/20 0.00% 97.5% 0.13% 98.6% 0.29% 96.0%
06/20 0.01% 97.8% 0.22% 98.9% 0.43% 96.7%
07/20 0.01% 96.4% 0.07% 98.7% 0.33% 93.9%
08/20 0.01% 92.9% 0.06% 96.0% 0.10% 85.9%
09/20 0.02% 92.1% 0.08% 95.7% 0.13% 82.9%

15



Impact of Concept Drift
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Phase
FPR F, FPR Fi FPR F. FPR Fi
Val 0.10% 98.6% 0.10% 92.1% 0.10% 98.8% 0.10% 98.0%

10/19 0.00% 94.9% 0.03% 71.1%
11/19 0.00% 95.8% 0.02% 81.0%
12/19 0.01% 96.6% 0.06% 84.9%
01/20 0.18% 93.7% 0.12% 78.0%
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06/20 0.01% 97.8% 0.04% 83.2%
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08/20 0.01% 92.9% 0.02% 47.2%
09/20 0.02% 92.1% 0.03% 56.0%
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Impact of Concept Drift

Ember-GBDT UCSB-GBDT SOREL-GBDT SOREL-DNN
Phase
FPR Fi FPR Fi FPR Fi FPR Fi

Val 0.10% 98.6% 0.10% 92.1% 0.10% 98.8% 0.10% 98.0%
10/19 0.00% 94.9% 0.03% 71.1% 0.09% 97.7% 0.31% 94.8%
11/19 0.00% 95.8% 0.02% 81.0% 0.05% 98.1% 0.40% 96.2%
12/19 0.01% 96.6% 0.06% 84.9% 0.24% 98.3% 0.45% 96.8%
01/20 0.18% 93.7% 0.12% 78.0% 2.14% 96.3% 2.27% 95.4%
02/20 0.07% 93.4% 0.33% 68.3% 4.82% 95.7% 6.68% 93.2%
03/20 0.01% 95.8% 0.01% 75.3% 0.13% 98.1% 0.35% 96.0%
04/20 0.00% 97.0% 0.02% 80.8% 0.14% 98.9% 0.26% 97.3%
05/20 0.00% 97.5% 0.05% 85.7% 0.13% 98.6% 0.29% 96.0%
06/20 0.01% 97.8% 0.04% 83.2% 0.22% 98.9% 0.43% 96.7%

1. Most classifiers got 98% F, on validation; but degraded (sometimes a lot) on BODMAS.

2. Concept drift could be discrete events instead of a monotonic trend over time.
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Mitigation Strategy 1: Incremental Retraining
2017 2018 2019 2020

Val L

Add 1% and test
Ember on next month BODMAS

>
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Mitigation Strategy 1: Incremental Retraining
2017 2018 2019 2020

Add 1% and test °°
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>
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Mitigation Strategy 1: Incremental Retraining
2017 2018 2019 2020

i

Add 1% and test oo
on next month BODMAS

>

Ember

99%; .'/‘/,.\.\']—-—-—v R ;!:;;i;.<:?k.-."\
RS S TR
of < \\'\’:/’ B e
3 96%
1£95% ~-m- Non-conformity 3 sampling strategies
94%, —%— Probability
--- Random
o/ L
3% —o— Embed-GBDT
92%
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Testing month
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Mitigation Strategy 1: Incremental Retraining
2017 2018 2019 2020

i

Add 1% and test oo
on next month BODMAS

>

Ember

99% 3 2 e ‘:;-;:;l-;.;,; .
/ \\ ’*~~~ ,/"‘____ \‘ ....... .

98% o g A 4 iy
3 96%
ir, 95% ~m- Non-conformity

949%, ~%- Probability

--- Random
o/ |
93% —o— Embed-GBDT
92%

1. Labeling 1% samiole-s pér-r.nont.h, all the Fl.sc-c.)res surpass 97%.

2. Different sampling methods have close performance.



Mitigation Strategy 2: Train with New Data
2019 2020

BODMAS

Train and Val

Take 1 month
-

>
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Mitigation Strategy 2: Train with New Data
2019 2020

BODMAS

>

Train and Val

Take 1 month
-

99% e

98% _/-v'/ Rat e ‘ v ‘\.\.
97%
96%
95%
94%
93%
92%

F; score

-¥—- BODMAS
—e— Ember-GBDT

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month
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Mitigation Strategy 2: Train with New Data

2019 1020
>
Train and Val IIIIIIIIIIII
Take 1 month BODMAS
___
99% !\\ i .
98%; 4 Yoy o TS~y

o, —¥- BODMAS
0
—e— Ember-GBDT

() \ N e AN on Mar Anr Ma Ne ALLO =g
1. Labeling new data and train a new classifier indeed improve the F, score.

2. A slight downward trend still exists, indicating the impact of concept drift.



Breakdown of False Negatives

Testing month FNR Existing Family FNR Unseen Family FNR
10/19 4.8% 3.4% 43.0%
11/19 4.0% 2.7% 35.4%
12/19 1.7% 1.4% 16.7%
01/20 3.0% 2.2% 27.0%
02/20 3.1% 2.4% 26.2%
03/20 4.2% 3.6% 20.0%
04/20 2.7% 2.5% 8.1%
05/20 3.5% 2.7% 9.4%
06/20 2.6% 2.3% 6.3%
07/20 5.5% 5.2% 6.8%
08/20 5.7% 4.8% 15.6%
09/20 7.2% 5.8% 16.4%
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Breakdown of False Negatives

Testing month FNR
10/19 4.8%
11/19 4.0%
12/19 1.7%
01/20 3.0%
02/20 3.1%
03/20 4.2%
04/20 2.7%
05/20 3.5%
06/20 2.6%
07/20 5.5%
08/20 5.7%
09/20 7.2%

Existing Family FNR

Unseen Family FNR
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Breakdown of False Negatives

Testing month FNR Existing Family FNR Unseen Family FNR
10/19 4.8% 3.4% 43.0%
11/19 4.0% 2.7% 35.4%
12/19 1.7% 1.4% 16.7%
01/20 3.0% 2.2% 27.0%
02/20 3.1% 2.4% 26.2%
03/20 4.2% 3.6% 20.0%
04/20 2.7% 2.5% 8.1%
05/20 3.5% 2.7% 9.4%
06/20 2.6% 2.3% 6.3%
07/20 5.5% 5.2% 6.8%
08/20 5.7% 4.8% 15.6%

1. Existing families indeed produce false negatives, e.g., malware variants.

2. Unseen families are more likely to be misclassified than existing families.
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Outline
s Introduction
e e TN i |

e Open problem: concept drift in malware family attribution
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A Multi-class Malware Classification Model

1. Train 2. Predict

Malware C
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—> o@o—b

Benign Malware Malware
A B
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A Multi-class Malware Classification Model

1. Train 2. Predict

Malware C

\/
“Benign”?
‘ - —> —> “Malware A”?
EI “Malware B”?

Benign Malware Malware
A B
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A Multi-class Malware Classification Model

1. Train 2. Predict

Malware C

\/

“ i
o%o —
“ a

Concept Drift!

?

AH ?
7 ?

Benign Malware Malware ]
A B (Unseen family)
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Close-world VS. Open-world

FIRecYe <) MANDIANT

e Close-world

* Both training and testing sets contain N families
« Open-world

* N is large and increases over time

o Malware from previously unseen families

FireEye Annual Report 2020

“1.1 million malware samples per day”
“41% malware families never seen before”

21




Experiment: Concept Drift in Family Attribution

2019 2020

BODMAS
Before Oct. 2019
(~1 month)

Take top N families
(malware only)
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Experiment: Concept Drift in Family Attribution

2019

BODMAS
Before Oct. 2019
(~1 month)

Take top N families
(malware only)

2020

BODMAS
(12 Testing months)

I

v
s
ot 62}-’ Prediction
L

GBDT
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Impact of Concept Drift

(

Top-2 acc:

Likelihood that top-2

predicted families
contain a sample’s
true family

\l/

Top-2 acc

100%
90%
80%
70%
60%
50%
40%
30%
20%

—8— N = 10 (known)

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep

Testing month

23



Impact of Concept Drift

(

Top-2 acc:

Likelihood that top-2

predicted families
contain a sample’s
true family

\l/

Top-2 acc

100%
90%
80%
70%
60%
50%
40%
30%
20%

—8— N = 10 (known)

~N

N =10 (known)
Known: testing set only
includes samples from 10
known training families

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep

Testing month

\_ %
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Impact of Concept Drift

100% 0 L e e " o

90% /

~

N =10 (all)
80% all: all testing samples,
g 70% includes previously
Y 60% unseen families
2 50% /
—8— N = 10 (known)

40% —4— N =10 (all)

/. I

30%

20%

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month
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Impact of Concept Drift

100% 0 L e e " o N\
90% / N = 40 (known)

e Larger number of

families is harder to train
70% )

80%

60%

Top-2 acc

50%
—8— N = 10 (known)
40% —4— N =10 (all)

—— N = 40 (known)

30%

20%

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month
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Impact of Concept Drift

90%
80%
9 70% N\
S e N = 40 (all)
Y 60% <
S oo ~._ Larger N means we have
(o] ope
& N = 10 (known) fewer unseen families
Y = a . .
0% e (nown) during testing, thus
30% ¢ MAoel better than N = 10 (all)
20%

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month
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Impact of Concept Drift

Top-2 acc

100%
90%
80%
70%
60%
50%
40%
30%
20%

00— L e e " o
/ N = 80 (known) \

N = 10 (known)
N = 10 (all)
N = 40 (known)
N = 40 (all)
N = 80 (known)

fedne

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month

Further increasing N
does not give a worse
performance because
later families do not
have many samples

\_

J
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Impact of Concept Drift

Top-2 acc

100%
90%
80%
70%
60%
50%
40%
30%
20%

—8— N = 10 (known)
—A— N =10 (all)
—— N = 40 (known)
—0— N =40 (all)
—r— N = 80 (known)
—&— N = 80 (all)

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month

\_

N =80 (all)
Fewer unseen families
during testing making it
better than N =40 (all)

\

J
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Impact of Concept Drift

100% S DD Sy Sy S S
90%

80%

N\
ye _
0% < N -— 80 (all)

50%

~ Fewer unseen families
during testing making it
better than N =40 (all)

\_ J

Top-2 acc

—8— N = 10 (known)
40% -4 N =10 (all)
—— N = 40 (known)
30% —0— N =40 (all)

—r— N = 80 (known)
—&— N = 80 (all)

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep
Testing month

20%

1. Unseen families significantly degrade the performance of a close-world classifier.

2. It becomes harder to train a decent classifier when N increases.




Open Problems and Challenges

o Out-of-distribution detection against malware evolution and unseen family
« Scale to large number of malware families and relationships among families

o« Combat real-world adversarial samples of malware binaries

29



Conclusion

« We release a new PE malware dataset with timestamp and malware families
« Concept drift poses challenges for both malware detection and attribution

o Unseen families are more likely to be misclassified than known families

30



Thank you!

Homepage

https://liminyang.web.lllinois.edu

Features and metadata open to public
Malware binaries available upon request

https://whyisyoung.github.io/BODMAS/

Check out our upcoming USENIX Sec’21 paper

CADE: Detecting and Explaining Concept Drift Samples

ARTIFACT
EVALUATED

for Security Applications [ ou 2oton

Limin Yang", Wenbo Guo®, Qingying Hao", Arridhana Ciptad

PASSED

Ali Ahmadzadeh?, Xinyu Xing’, Gang Wang”
“University of Illinois at Urbana-Champaign The Pennsylvania State University ¥Blue Hexagon

liminy2@illinois.edu, wzg13@ist.psu.edu, ghao2@illinois.edu, {arri, ali} ai, xxing@ist.psu.edu, gangw @illinois.edu
Abstract Production Original Classifier Training Data
Space Incoming Samples p

Concept drift poses a critical challenge to deploy machine
learning models to solve practical security problems. Due
to the dynamic behavior changes of attackers (and/or the
benign counterparts), the testing data distribution is often
shifting from the original training data over time, causing
major failures to the deployed model.

To combat concept drift, we present a novel system CADE
aiming to 1) detect drifting samples that deviate from existing
classes, and 2) provide explanations to reason the detected
drift. Unlike traditional approaches (that require a large num-
ber of new labels to determine concept drift statistically), we
aim to identify individual drifting samples as they arrive. Rec-

ognizing the ck duced by the high-di
outlier space, we propose to map the data samples into a
1 i space and a atically learn a distance

function to measure the dissimilarity between samples. Using
contrastive learning, we can take full advantage of existing
labels in the training dataset to learn how to compare and
contrast pairs of samples. To reason the meaning of the de-
tected drift, we develop a distance-based explanation method.
We show that explaining “distance” is much more effective
than traditional methods that focus on explaining a “decision
boundary” in this problem context. We evaluate CADE with
two case studies: Android malware classification and network
intrusion detection. We further work with a security com-
pany to test CADE on its malware database. Our results show
that CADE can effectively detect drifting samples and provide
semantically meaningful explanations.

Monitoring
Space

CADE

Figure 1: Drifting sample detection and explanation.

environments in which the models are deployed are usually
dynamically changing over time. Such changes may include
both organic behavior changes of benign players and mali-
cious mutations and adaptations of attackers. As a result, the
testing data distribution is shifting from the original training
data, which can cause serious failures to the models [23].

To address concept drift, most learning-based models re-
quire periodical re-training [36,39,52]. However, retraining
often needs labeling a large number of new samples (expen-
sive). More importantly, it is also difficult to determine when
the model should be retrained. Delayed retraining can leave
the outdated model vulnerable to new attacks.

We envision that combating concept drift requires estab-
lishing a monitoring system to examine the relationship be-
tween the incoming data streams and the training data (and/or
the current classifier). The high-level idea is illustrated in
Figure 1. While the original classifier is working in the pro-
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